成绩比较(容斥+组合数学+离散化(雾))

Redpojoe

2018-12-03 15:16:01

Solution

(数学公式的锅暂时已修复) 玄学组合数学题。对于我等蒟蒻,高级的方法是不存在的,~~dp是不存在的~~,所以我们只有用强硬的组合数学功底解决。 前置知识:没有神仙的各种数学知识,只有基本的组合数学。 #### 大体思路框架 我们可以清晰地把整个题目的框架分成三份: 1. 计算在n-1个人中选出k个,被B神碾压的方案数。 2. 对于剩下的n-1-k个人,计算有多少种方案来合法分配每一个人、每一门科目的得分状况。这里,得分状况定义为是比B神高,还是比B神低或相等。 3. 已知每一门科目的得分状况,计算对于给定的满分,有多少种分配分数的方案。 首先,第一个部分的答案很显然是$C(n-1,k)$。接下来我们要讨论第2、3部分。 #### 第二部分计数 在第二部分中,很显然我们可以对于每一门科目进行讨论。对于每一门科目,分数比B神高的人有$R[i]-1$个(不能重复,不计顺序),并且只可能在那$n-k-1$个人中诞生。所以对于这门课,方案为$C(R[i]-1,n-k-1)$个。用乘法原理可以得到。 但是有一个问题:由于**恰好**有k个人被碾压,每个人都必须被选中至少一次。对于这种问题,一个很常用的方法就是**容斥原理**。 定义函数$F(p)$表示至多有p个人被碾压,这一步总共的方案数。上述的乘法原理+组合数的计算过程就是$F(n-k-1)$的计算过程,只用把参数改成p即可解决。然后枚举p进行容斥,即可得到第二部分的计算结果。复杂度$O(nm)$。 #### 第三部分计数 在第三部分中,显然,可以把每一门科目分开来处理。这样,需要我们实现一个函数$G(u,a,b)$,表示有u种可选分数,其中a个人比B神高,b个人低于或等于B神的方案数。这里假定根据第一、第二步,这些人的得分状况已经被选定好,所以不用考虑顺序问题。 枚举B神的分数,显然有: $$G(u,a,b)=\sum_{i=0}^{u-1}i^a\cdot(u-i)^b$$ 其中i表示有多少种分数比B神的分数高。 然而,由于u的范围很大,这样显然T飞。所以我们需要作出一些措施。想想,你平常遇到这种数据范围很大的题都是怎么做的?很容易想到离散化。当然这里不用直接离散化,而要借助离散化的思想。 我们可以**枚举这n个人有t种不同的得分**,然后,t的范围就很小了,这个时候直接调用暴力函数也没事。同时,我们知道有$C(u,t)$种方案从u个分数中选出t个。所以对于t,贡献为$D(t)=G(t,a,b)\cdot C(u,t)$。最后用加法原理加起来即可。 但是那个式子其实是错的,因为又有一个问题:在暴力函数中,有一种情况就是:给你t种可能的分数,但是并不全都取到t种,会导致重复。所以,我们可以再用一次容斥,把重复的情况剔除。对于**恰**有r种分数的情况,被重复计算了$C(t,r)$次。故有: $D(t)=(G(t,a,b)-\sum_{i=1}^{t-1}D(i)\cdot C(t,i))\cdot C(u,t)$ 所以而t最大为n。所以每次用$O(n^2)$的复杂度,可以计算出$G(u,a,b)$。 最后乘法原理把三步乘起来,从复杂度$O(n^2m)$。 代码: ```cpp #include<bits/stdc++.h> using namespace std; const int P=1e9+7; int n,m,k; int U[105],R[105]; long long Pow(long long a,long long p) { long long ret=1; for(; p; p>>=1,a=a*a%P)if(p&1)ret=ret*a%P; return ret; } //各种预处理 long long C[105][105],Pw[105][105];//在暴力G函数中用的乘方也可以预处理 long long Fact[105],Inv[105]; void Init() { for(int i=1; i<=100; i++) for(int j=0; j<=i; j++) if(j==0||j==i)C[i][j]=1; else C[i][j]=(C[i-1][j-1]+C[i-1][j])%P; Fact[0]=1; for(int i=1; i<=100; i++)Fact[i]=Fact[i-1]*i%P,Inv[i]=Pow(i,P-2); for(int i=0; i<=100; i++) { Pw[i][0]=1; for(int j=1; j<=100; j++)Pw[i][j]=Pw[i][j-1]*i%P; } } long long F(int p) {//F函数 long long Ans=1; for(int i=1; i<=m; i++)Ans=Ans*C[p][R[i]-1]%P;//暴力即可 return Ans; } long long Calc() { int tot=n-k-1; long long Ans=0; for(int i=0; i<tot; i++) { long long th=F(tot-i)*C[tot][i];//不要忘记乘组合数! if(i&1)Ans-=th;//i表示tot个人中有多少个人没有出现,故偶加奇减 else Ans+=th; Ans%=P; } Ans=(Ans+P)%P; return Ans; } long long g(int u,int a,int b) {//暴力G函数 long long ret=0; for(int i=0; i<u; i++)ret=(ret+Pw[i][a]*Pw[u-i][b])%P; return ret; } long long D[105]; long long G(int u,int a,int b) {//离散化优化G函数 long long Ans=0; long long Combination=1; for(int i=1; i<=n; i++) { D[i]=g(i,a,b); for(int j=1; j<i; j++)D[i]=(D[i]-D[j]*C[i][j])%P;//减去重复的 Combination=Combination*(u-i+1)%P*Inv[i]%P;//组合数可以递推 Ans=(Ans+D[i]*Combination)%P;//加法原理 } return (Ans+P)%P; } void Solve() { Init(); long long Ans=C[n-1][k]*Calc()%P; for(int i=1; i<=m; i++)Ans=Ans*G(U[i],R[i]-1,n-R[i])%P;//乘法原理 printf("%lld\n",Ans); } int main() { scanf("%d%d%d",&n,&m,&k); for(int i=1; i<=m; i++)scanf("%d",&U[i]); for(int i=1; i<=m; i++)scanf("%d",&R[i]); Solve(); return 0; } ``` By ^3